光纖光柵傳感器的基本原理及應用
一、前言
1978 年加拿大渥太華通信研究中心的K·O·Hill等人首次在摻鍺石英光纖中發現光纖的光敏效應,并采用駐波寫入法制成世界上第一根光纖光柵。1989年,美 國聯合技術研究中心的G·Meltz等人實現了光纖Bragg光柵(FBG)的UV激光側面寫入技術,使光纖光柵的制作技術實現了突破性進展。隨著光纖光 柵制造技術的不斷完善,其應用的成果日益增多,從光纖通信、光纖傳感到光計算和光信息處理的整個領域都將由于光纖光柵的實用化而發生革命性的變化,光纖光 柵技術是光纖技術中繼摻鉺光纖放大器(EDFA)技術之后的又一重大技術突破。
光 纖光柵是利用光纖中的光敏性制成的。所謂光纖中的光敏性是指激光通過摻雜光纖時,光纖的折射率將隨光強的空間分布發生相應變化的特性。而在纖芯內形成的空 間相位光柵,其實質就是在纖芯內形成一個窄帶的(透射或反射)濾波器或反射鏡。利用這一特性可制造出許多性能獨特的光纖器件,它們都具有反射帶寬范圍大、 附加損耗小、體積小,易與光纖耦合,可與其它光器件兼容成一體,不受環境塵埃影響等一系列優異性能。
光 纖光柵的種類很多,主要分兩大類:一是Bragg光柵(也稱為反射或短周期光柵),二是透射光柵(也稱為長周期光柵)。光纖光柵從結構上可分為周期性結構 和非周期性結構,從功能上還可分為濾波型光柵和色散補償型光柵;其中,色散補償型光柵是非周期光柵,又稱為啁啾光柵(chirp光柵)。目前光纖光柵的應 用主要集中在光纖通信領域和光纖傳感器領域。
在 光纖傳感器領域,光纖光柵傳感器的應用前景十分廣闊。由于光纖光柵傳感器具有抗電磁干擾、尺寸小(標準裸光纖為125um)、重量輕、耐溫性好(工作溫度 上限可達400℃~600℃)、復用能力強、傳輸距離遠(傳感器到解調端可達幾公里)、耐腐蝕、高靈敏度、無源器件、易形變等優點,早在1988年就成功 地應用在航空、航天領域中作為有效的無損檢測當中,同時光纖光柵傳感器還可應用于化學醫藥、材料工業、水利電力、船舶、煤礦等各個領域,以及在土木工程領域中(如建筑物、橋梁、水壩、管線、隧道、容器、高速公路、機場跑道等)的混凝土組件和結構中測定結構的完整性和內部應變狀態,從而建立靈巧結構,并進一步實現智能建筑。
二、光纖光柵傳感器的工作原理
我們知道,光柵的Bragg波長lB由下式決定:lB=2nL (1)
式中,n—芯模有效折射率; L—光柵周期。
當光纖光柵所處環境的溫度、應力、應變或其它物理量發生變化時,光柵的周期或纖芯折射率將發生變化,從而使反射光的波長發生變化,通過測量物理量變化前后 反射光波長的變化,就可以獲得待測物理量的變化情況。如利用磁場誘導的左右旋極化波的折射率變化不同,可實現對磁場的直接測量。此外,通過特定的技術,還 可實現對應力和溫度的分別測量和同時測量。通過在光柵上涂敷特定的功能材料(如壓電材料),對電場等物理量的間接測量也能實現。
1、啁啾光纖光柵傳感器的工作原理
上面介紹的光柵傳感器系統,光柵的幾何結構是均勻的,對單參數的定點測量很有效,但在需要同時測量應變和溫度或者測量應變或溫度沿光柵長度的分布時就顯得力不從心。此時,采用啁啾光纖光柵傳感器就就是一個不錯的選擇。
啁啾光纖光柵由于其優異的色散補償能力而應用在高比特遠程通信系統中。與光纖Bragg光柵傳感器的工作原理基本相同,在外界物理量的作用下,啁啾光纖光柵除了DlB的變化外,光譜的展寬也會發生變化。這種傳感器在應變和溫度均存在的場合是非常有用的。由于應變的影響,啁啾光纖光柵反射信號會拓寬,峰值波長也會發生位移,而溫度的變化則由于折射率的溫度依賴性(dn/dT),僅會影響重心的位置。因此通過同時測量光譜位移和展寬,就可以同時測量應變和溫度。
2、長周期光纖光柵(LPG)傳感器的工作原理
長周期光纖光柵(LPG)的周期一般認為有數百微米,它在特定的波長上可把纖芯的光耦合進包層,其公式如下:li=(n0-niclad)·L (2)
式中,n0—纖芯的折射率;niclad—i階軸對稱包層模的有效折射率。
光在包層中將由于包層/空氣界面的損耗而迅速衰減,留下一串損耗帶。一個獨立的LPG可能在一個很寬的波長范圍上有許多的共振,其共振的中心波長主要取決于芯和包層的折射率差,由應變、溫度或外部折射率變化而產生的任何變化都能在共振中產生大的波長位移,通過檢測Dli,就可獲得外界物理量變化的信息。LPG在給定波長上共振帶的響應通常有不同的幅度,因而適用于構建多參數傳感器。
三、光纖光柵傳感器的應用
1、在地球動力學中的應用
在地震檢測等地球動力學領域中,地表驟變等現象的原理及其危險性的估定和預測是非常復雜的,而火山區的應力和溫度變化是目前為止能夠揭示火山活動性及其關 鍵活動范圍演變的最有效手段心。光纖光柵傳感器在這一領域中的應用主要是在巖石變形、垂直震波的檢測以及作為地形檢波器和光學地震儀使用等方面?;顒訁^的 應變通常包含靜態和動態兩種,靜態應變(包括由火山產生的靜態變形等)一般都定位于與地質變形源很近的距離,而以震源的震波為代表的動態應變則能夠在與震 源較遠的地球周邊環境中檢測到。為了得到相當準確的震源或火山源的位置,更好地描述源區的幾何形狀和演變情況,需要使用密集排列的應力-應變測量儀。光纖 光柵傳感器是能實現遠距離和密集排列復用傳感的寬帶、高網絡化傳感器,符合地震檢測等的要求,因此它在地球動力學領域中無疑具有較大的潛在用途。有報道指 出,光纖光柵傳感器已成功檢測了頻率為0.1Hz~2Hz,大小為10-9 e的巖石和地表動態應變。
2、在航天器及船舶中的應用
先進的復合材料抗疲勞、抗腐蝕性能較好,而且可以減輕船體或航天器的重量,對于快速航運或飛行具有重要意義,因此復合材料越來越多地被用于制造航空航海工具(如飛機的機翼)。
為全面衡量船體的狀況,需要了解其不同部位的變形力矩、剪切壓力、甲板所受的抨擊力,普通船體大約需要100個傳感器,因此波長復用能力極強的光纖光柵傳 感器最適合于船體檢測。光纖光柵傳感系統可測量船體的彎曲應力,而且可測量海浪對濕甲板的抨擊力。具有干涉探測性能的16路光纖光柵復用系統成功實現了帶 寬為5kHz范圍內、分辨率小于10ne/(Hz)1/2的動態應變測量。
另外,為了監測一架飛行器的應變、溫度、振動,起落駕駛狀態、超聲波場和加速度情況,通常需要100多個傳感器,故傳感器的重量要盡量輕,尺寸盡量小,因 此最靈巧的光纖光柵傳感器是最好的選擇。另外,實際上飛機的復合材料中存在兩個方向的應變,嵌人材料中的光纖光柵傳感器是實現多點多軸向應變和溫度測量的 理想智能元件。
3、在民用工程結構中的應用
民用工程的結構監測是光纖光柵傳感器最活躍的領域。對于橋梁、礦井、隧道、大壩、建筑物等來說,通過測量上述結構的應變分布,可以預知結構局部的載荷及狀 況,方便進行維護和狀況監測。光纖光柵傳感器可以貼在結構的表面或預先埋入結構中,對結構同時進行沖擊檢測、形狀控制和振動阻尼檢測等,還以監視結構的缺 陷情況。另外,多個光纖光柵傳感器可以串接成一個傳感網絡,對結構進行準分布式檢測,并通過計算機對傳感信號進行遠程控制。
光纖光柵傳感器可以檢測的建筑結構之一為橋梁。應用時,一組光纖光柵被粘于橋梁復合筋的表面,或在梁的表面開一個小凹槽,使光柵的裸纖芯部分嵌進凹槽中 (便于防護)。如果需要更加完善的保護,則最好是在建造橋時把光柵埋進復合筋。同時,為了修正溫度效應引起的應變,可使用應力和溫度分開的傳感臂,并在每 一個梁上均安裝這兩個臂。
兩個具有相同中心波長的光纖光柵代替法布里-珀羅干涉儀的反射鏡,形成全光纖法布里-珀羅干涉儀(FFPI),利用低相干性使干涉的相位噪聲最小化,這一 方法實現了高靈敏度的動態應變測量。用FFPI結合另外兩個FBG,其中一個光柵用來測應變,另一個被保護起來(免受應力影響),以測量和修正溫度效應, 同時實現了對三個量的測量:溫度、靜態應變、瞬時動態應變。這種方法兼有干涉儀的相干性和光纖布拉格光柵傳感器的優點,在5me的測量范圍內,實現了小于 1me的靜態應變測量精度、0.1℃的溫度靈敏度和小于1ne/(Hz)1/2的動態應變靈敏度。